Experimental Tracking APIs
fedml.log()
Usage
fedml.log(
metrics: dict,
step: int = None,
customized_step_key: str = None,
commit: bool = True) -> None
Arguments
metrics (dict)
: A dictionary object for metrics, e.g., {"accuracy": 0.3, "loss": 2.0}.step (int=None)
: Set the index for current metric. If this value isNone
, then step will be the current global step counter.customized_step_key (str=None)
: Specify the customized step key, which must be one of the keys in the metrics dictionary.commit (bool=True)
: If commit isFalse
, the metrics dictionary will be saved to memory and won't be committed until commit isTrue
.
Returns
None
log dictionary of metric data to the TensorOpera AI Platform.
Examples
fedml.log({"ACC": 0.1})
fedml.log({"acc": 0.11})
fedml.log({"acc": 0.2})
fedml.log({"acc": 0.3})
fedml.log({"acc": 0.31}, step=1)
fedml.log({"acc": 0.32, "x_index": 2}, step=2, customized_step_key="x_index")
fedml.log({"loss": 0.33}, customized_step_key="x_index", commit=False)
fedml.log({"acc": 0.34}, step=4, customized_step_key="x_index", commit=True)
fedml.log_artifact()
Usage
fedml.log_artifact(
artifact: Artifact,
version=None,
run_id=None,
edge_id=None) -> None
Arguments
artifact (Artifact)
: An artifact object, e.g., file, log, model, etc.version (str=None)
: The version of TensorOpera AI Platform, options: dev, test, release. Default is release (fedml.ai).run_id (str=None)
: Run id for the artifact object. Default isNone
, which will be filled automatically.edge_id (str=None)
: Edge id for current device. Default isNone
, which will be filled automatically.
Returns
None
log artifacts to the TensorOpera AI Platform (fedml.ai), such as file, log, model, etc.
Examples
artifact = fedml.Artifact(name="general-file", type=fedml.ARTIFACT_TYPE_NAME_GENERAL)
artifact.add_file("./requirements.txt")
artifact.add_dir("./config")
fedml.log_artifact(artifact)
artifact = fedml.Artifact(name="log-file", type=fedml.ARTIFACT_TYPE_NAME_LOG)
artifact.add_file("./log_file")
artifact.add_dir("./log_dir")
fedml.log_artifact(artifact)
artifact = fedml.Artifact(name="source-file", type=fedml.ARTIFACT_TYPE_NAME_SOURCE)
artifact.add_file("./run.py")
artifact.add_dir("./src")
fedml.log_artifact(artifact)
artifact = fedml.Artifact(name="dataset-file", type=fedml.ARTIFACT_TYPE_NAME_DATASET)
artifact.add_file("./mnist.dataset")
artifact.add_dir("./dataset")
fedml.log_artifact(artifact)
artifact = fedml.Artifact(name="model-file", type=fedml.ARTIFACT_TYPE_NAME_MODEL)
artifact.add_file("./cv-model")
artifact.add_dir("./model_dir")
fedml.log_artifact(artifact)
fedml.log_model()
Usage
fedml.log_model(
model_name,
model_file_path,
version=None) -> None
Arguments
model_name (str)
: model name.model_file_path (str)
: The file path of model name.version (str=None)
: The version of TensorOpera AI Platform, options: dev, test, release. Default is release (fedml.ai).
Returns
None
log model to the TensorOpera AI Platform (fedml.ai).
Examples
fedml.log_model("cv-model", "./cv-model.bin")